
Code-Documentation

Code – Documentation
Operational Use

Prerequisites
Provide Persistence

Initial Creation of vfrbr Database
Emptying vfrbr Database for New Load
vfrbr-persist Maven Project for Java Persistence

FRBRize MARC Data
Dependencies of FRBRization
Setup for FRBRization

vfrbr Database
MARC Authority Record Files
MARC Bibliographic Record Files
Project Settings for FRBRization

Execution of FRBRization
Products from FRBRization

Export FRBRized Data
Dependencies of Exporting
Setup for Exporting
Execution of Exporting

End User Search Interface (Scherzo)
Building the index
Working with Scherzo

Operational Use

Prerequisites

JDK 1.6 http://www.oracle.com/technetwork/java/javase/downloads/index.html

Maven 2 http://maven.apache.org/

Tomcat http://tomcat.apache.org/

NetBeans IDE (recommended) http://netbeans.org/

Provide Persistence

Data persistence is provided using a MySQL relational database.

Initial Creation of vfrbr Database

Creation of the database presumes an existing installation of MySQL, with an established user and password.
The initial installation of MySQL results in the default creation of a "root" user with no password.
With this default condition, the client can be accessed thusly:mysql

system-prompt$ mysql --user="root" --password=""

Note that an empty quoted parameter is required for no password.

An initial database space can be created with the mysql client command:

mysql> create database vfrbr

This creates a database named "vfrbr". There is nothing special about using "vfrbr" for the database name. Whatever name used will be specified

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://maven.apache.org/
http://tomcat.apache.org/
http://netbeans.org/

in subsequent program settings.

The tables for a vfrbr persistence database can be created with SQL files contained in the project.vfrbr-persist

vfrbr-persist/
 src/
 main/
 resources/
 sql/
 ddl/
 create-constraints.sql
 create-tables.sql
 drop-constraints.sql
 drop-tables.sql
 fiz/
 create-fiz-tables.sql
 drop-fiz-tables.sql

To create the vfrbr tables, execute the following SQL files from the source directory, or with path prepended to the file names. Once the database
has been created, the mysql client can be invoked with the database as a parameter.

system-prompt$ mysql --user"root" --password"" vfrbr
mysql> source create-tables.sql
mysql> source create-constraints.sql
mysql> source fiz/create-fiz-tables.sql

Emptying vfrbr Database for New Load

If a new frbrization load is to be done subsequent to a previous one, the database tables should be emptied. This can be done by sequentially
dropping the constraints, dropping the tables, and creating the tables and constraints by execution of the following sequence of SQL files.

mysql> source drop-constraints.sql
mysql> source drop-tables.sql
mysql> source create-tables.sql
mysql> source create-constraints.sql
mysql> source fiz/drop-fiz-tables.sql
mysql> source fiz/create-fiz-tables.sql

Dropping the constraints on a fully loaded database can take some several minutes. But the other files all execute very quickly.

vfrbr-persist Maven Project for Java Persistence

The maven Java project provides the linkage between Java and the relational database. The project contains a project of Javavfrbr-persist
classes that represent an implementation of an extended FRBR model. The Java classes have annotations that map from Java to the relational
database tables, as provided by the Java Persistence API (JPA).

The project needs to be compiled and build through maven to be installed into a maven repository to be available as a dependency for the other
program projects providing FRBRization loading, data exporting, and Scherzo user search interface.

A vfrbr database needs to exist before compiling. The user, password, and JDBC connection URL are specified in the file.jdbc.properties
The JPA settings are specified in the file.persistence.xml

vfrbr-persist/
 src/
 main/
 resources/
 jdbc.properties
 META-INF/
 persistence.xml

Top

FRBRize MARC Data

The FRBRization process reads MARC bibliographic record files, and using MARC authority record files, converts the bibliographic data into an
extended FRBR form persisted into relational database tables.

The program code to perform FRBRization is contained in the maven Java project.vfrbr-frbrize-marc

Dependencies of FRBRization

The project has a maven dependency upon the project. For the frbrization project to compile thevfrbr-frbrize-marc vfrbr-persist
persistence project needs to have been compiled and installed into an available maven repository. The vfrbr relational database is used by the
persistence project in supporting the frbrization project.

Setup for FRBRization

vfrbr Database

The database that will be used is determined by the properties file.vfrbr-persist jdbc.properties
The database should be empty unless an incremental loading is being performed.

MARC Authority Record Files

The frbrization process allows for the use of authority files from a service like OCLC's. These files are accessed via Z39.50 and are cached
locally on the file system. The locations of the files are specified in the properties files.vfrbr-frbrize-marc authCache.properties
There are separate directories for work, people, and corporations.The properties file is also where you input information about the authority
service you are using as well as login information. If you do have access to this delete the file AuthorityHandler.java and comment all references
to it (this is most easily done in an IDE such as NetBeans or Eclipse). If you do want to make use of authority files you must install local Z39.50
client development software. We use YAZ for this -- ; In order to use YAZ in Java code you also need tohttps://www.indexdata.com/yaz.
install SWIG () and g++ (; Once all that has been installed download YAZ4J (http://www.swig.org/ http://directory.fsf.org/project/gpp/).

) and use maven to install it to you local repository by simply typing mvn install in the YAZ4J directory. Thehttp://www.indexdata.com/yaz4j
maven script will inform you of any problems. Once fetched the frbrization application will use these cached files. If you want to fetch new
versions of these files simply delete the directory you set in the authCache.properties file.

MARC Bibliographic Record Files

The frbrization processes MARC bibliographic record files.
The location of the files is specified in the properties file. The names of the files are hardvfrbr-frbrize-marc batchLoading.properties
coded in the program.BatchLoading.java

Project Settings for FRBRization

The property files (vfrbr-frbrize-marc/src/main/resources/):

authCache.properties:
should hold the directory paths for the cached MARC authority files;
batchLoading.properties:
should hold the directory path for the MARC data files,
the property is not used;persist_unit_name
compositionFormCodes.properties:
holds the codes and values for composition forms;
countryCodes.properties:
holds the codes and values for country names;
jdbc.properties:
is not used for FRBRization
(but is used for generating analysis report spreadsheet data);
languageCodes.properties:
holds the codes and values for language names;
log4j.properties:
holds the settings for logging files.

The MARC bibliographic record files to process are coded in the BatchLoading.java program.

https://www.indexdata.com/yaz.
http://www.swig.org/
http://directory.fsf.org/project/gpp/).
http://www.indexdata.com/yaz4j

BatchLoading.java

...
 [] MARC_FILES = {private final String
 ,"frbr01.mrc"
 ,"frbr02.mrc"
 ,"frbr03.mrc"
 ,"frbr04.mrc"
 ,"frbr05.mrc"
 ,"frbr06.mrc"
 ,"frbr07.mrc"
 ,"frbr08.mrc"
 ,"frbr09.mrc"
 ,"frbr10.mrc"
 ,"frbr11.mrc"
 ,"frbr12.mrc"
 ,"frbr13.mrc"
 ,"frbr14.mrc"
 ,"frbr15.mrc"
 ,"frbr16.mrc"
 ,"frbr17.mrc"
 ,"frbr18.mrc"
 ,"frbr19.mrc"
 "frbr20.mrc"
 };
...

Selective commenting of the source code can limit the processing to a subset of the files.

Execution of FRBRization

The FRBRization process uses a rather large amount of program memory space to execute.
Successful execution of the program has been using options to run the program as a separately forked process with a VM parameter of

 to ensure enough execution space.-Xmx3500m
Running locally on a MacBook Pro with 2.4 GHz Intel Core 2 Duo processor, with a local MySQL database, the FRBRization of all twenty files
takes about six and a half hours (400 min.).
To capture a log of just one FRBRization run, ensure that any existing log file at the log4j properties destination setting has been deleted.

As a Maven-based project the Java program can be executed from within an IDE context that supports integration withvfrbr-frbrize-marc
Maven or from a command-line invocation through the command. To execute via maven typemvn

mvn exec:java -Dexec.mainClass= "edu.indiana.dlib.vfrbr.frbrize.batchloading.BatchLoading"

Products from FRBRization

After the FRBRization run, the MySQL database will be loaded and a processing log file will be created.
The log file reports all the MARC records processed and the details of the processing. The file will be quite large (1.27 G) but can be quite useful
for analyzing the details of FRBRization processing. The viewing utility has worked well for examining the log file, since it does not need toless
read the entire file into a buffer.
The other useful product to produce is a portable dump of the database, created with the MySQL utility program. This produces anmysqldump
output of SQL commands that can be used as input to create a duplicate database. Redirecting the output to a file (928 MB) records the output
into a backup record of the database.

system-prompt$ mysqldump --user"root" --password"" vfrbr > mysqldump.sql

The backup file can be imported into an existing database using the input redirection feature of the mysql client. This would typically be done with
an empty vfrbr database.

system-prompt$ mysql --user"root" --password"" vfrbr < mysqldump.sql

Note that the use of the name "mysqldump" for the sql backup file is only convention.

Top

Export FRBRized Data

FRBRized data can be exported from the persistence database in the form of XML based on the 1.0 or 1.1 Schema namespace files, or RDF/XML
with OWL namespace declarations structured similiar to the 1.1 XML Schema structure.

Dependencies of Exporting

The maven project depends upon the project being available from a maven repository and having a loadedvfrbr-export vfrbr-persist
vfrbr database as specified in the properties file of the project.jdbc.properties vfrbr-persist

Setup for Exporting

The determination of which elements to export is established by inclusion or commenting of lines within the main program.XMLExport.java

For example, the following code would export all elements:

Exporting.java

...
 void exportingTest() {public
 exportWorks();
 exportExpressions();
 exportManifestations();
 exportPersons();
 exportCorporateBodies();
 exportStructRealized();
 exportStructEmbodied();
 exportResponCreated();
 exportResponRealized();
 exportResponProduced();
 }
...

and this code would just export Works:

Exporting.java

...
 void exportingTest() {public
 exportWorks();
// exportExpressions();
// exportManifestations();
// exportPersons();
// exportCorporateBodies();
// exportStructRealized();
// exportStructEmbodied();
// exportResponCreated();
// exportResponRealized();
// exportResponProduced();
}
...

The determination of which kind of export to produce is established by inclusion or commenting of lines within the context .Export.java

For example, this setting is for an XML 1.1 export of efrbr.

ExportContext.java

...
 /*
 * Default initializations.
 */
 {static
 uriStem = "http: ;//vfrbr.info/"

// fileDirPath = ;"/usr/local/vfrbr/exports/xml/1.1/"
fileDirPath = ;"/usr/local/vfrbr/exports/rdf/"

 scheme = ;"XML"

 version = ;"1.1"

 level = ;"efrbr"
 }
...

The supported combinations for efrbr export types are:
*XML 1.0
*XML 1.1

For each element, there is a context file that specifies the stem of the export file name, the number of records to include in a file (multiple files
have serial numbering in the file name), whether only a sample of data elements is being exported, and for a sample the beginning and ending
elements being sampled.

For example, the context file for Works:

WorkContext.java

...
 WorkContext() {public

 fileStem = ;"work"

 recsPerFile = 5000;

 sampleExport = ;false

 sampleFromIndex = 0;

 sampleToIndex = 10;
...

The same configuration for RDF can be found in the class at the top of the file. The RDF exporter is set to alwaysBaseEntityExporter.java
export both frbr and efrbr levels.

Execution of Exporting

The exporting program can be executed in the same manner as the program, and should include the VM parameter forBatchLoading.java
maximum memory size and be executed as a separately forked process. Run XMLExport or RDFExport depending on what you wish to export.

Top

End User Search Interface (Scherzo)

The vfrbr-search download contains two separate Maven projects. One called vfrbr and one called vfrbr-search. The vfrbr-search project interacts
with a database of FRBRized records and an embedded version of Solr (a popular search server) to build the search indexes. The vfrbr project
contains the user interface and depends on vfrbr-search.

Building the index

The vfrbr-search project expects that you have already set up your vfrbr-persist project and database and have loaded it with records via the
vfrbr-frbrize-marc project as documented above. If you have your vfrbr-persist project set up correctly there is only line that needs changed to
configure vfrbr-search. That line is located in /vfrbr-search/src/main/resources/solrconfig.xml on line 39.

solrconfig.xml line 39

<dataDir>/usr/local/vfrbr/solr</dataDir>

Simply change this to a directory that tomcat can read from and is where you want your indexes to be stored.

Now all you have to do is run the class edu.indiana.dlib.vfrbr.search.solr.Indexer. Again this can be done in an IDE or can be done with maven on
the command line. First enter the base directory for vfrbr-search (it will have the file pom.xml in it) and type:

mvn install
mvn exec:java -Dexec.mainClass= "edu.indiana.dlib.vfrbr.search.solr.Indexer"

This can take some time to run, but you should now have a search index built and are ready to run the end user search interface against it.

Working with Scherzo

Working with Scherzo requires some familiarity with the Tomcat Application Server. The official Tomcat website () is ahttp://tomcat.apache.org/
great resource for learning how to use Tomcat. The search application itself gets all of its configuration from its dependencies so all you need to
do to run Scherzo is build it with maven and deploy the "war" file that maven produces. You build this application the same as the rest by moving
to the vfrbr directory in console and typing "mvn install" or building in your IDE. After building there will be a new subdirectory under vfrbr called
"target" and this directory contains the file scherzo.war. Deploy this file to your Tomcat instance on the same machine that has the indexes on, it
and visit the URL of you application (something like or).http://localhost:8080/scherzo http://tomcat.university.edu:8080/scherzo

http://tomcat.apache.org/
http://localhost:8080/scherzo
http://tomcat.university.edu:8080/scherzo

